249 lines
6.0 KiB
Lua
249 lines
6.0 KiB
Lua
if mathUtilsG then
|
|
return mathUtilsG
|
|
end
|
|
local mathUtils = {}
|
|
|
|
-- imports
|
|
|
|
local constants = require("Constants")
|
|
|
|
-- constants
|
|
|
|
local TICKS_A_MINUTE = constants.TICKS_A_MINUTE
|
|
|
|
-- imported functions
|
|
|
|
local mSqrt = math.sqrt
|
|
local mLog10 = math.log10
|
|
|
|
local mRandom = math.random
|
|
local mFloor = math.floor
|
|
local mAbs = math.abs
|
|
|
|
-- module code
|
|
|
|
function mathUtils.roundToFloor(number, multiple)
|
|
return mFloor(number / multiple) * multiple
|
|
end
|
|
|
|
function mathUtils.roundToNearest(number, multiple)
|
|
local num = number + (multiple * 0.5)
|
|
return num - (num % multiple)
|
|
end
|
|
|
|
function mathUtils.randomTickEvent(tick, low, high)
|
|
local range = high - low
|
|
local minutesToTick = (range * mRandom()) + low
|
|
return tick + mathUtils.roundToNearest(TICKS_A_MINUTE * minutesToTick, 1)
|
|
end
|
|
|
|
function mathUtils.distort(xorRandom, num, stdDev, min, max)
|
|
local amin = min or num * 0.70
|
|
local amax = max or num * 1.30
|
|
local sd = stdDev or 0.17
|
|
if (num < 0) then
|
|
local t = amin
|
|
amin = amax
|
|
amax = t
|
|
end
|
|
return mathUtils.roundToNearest(mathUtils.gaussianRandomRangeRG(num, num * sd, amin, amax, xorRandom), 0.01)
|
|
end
|
|
|
|
function mathUtils.linearInterpolation(percent, min, max)
|
|
return ((max - min) * percent) + min
|
|
end
|
|
|
|
function mathUtils.xorRandom(state)
|
|
local xor = bit32.bxor
|
|
local lshift = bit32.lshift
|
|
local rshift = bit32.rshift
|
|
|
|
state = state + 21594771
|
|
|
|
return function()
|
|
state = xor(state, lshift(state, 13))
|
|
state = xor(state, rshift(state, 17))
|
|
state = xor(state, lshift(state, 5))
|
|
state = state % 2147483647
|
|
return state * 4.65661287525e-10
|
|
end
|
|
end
|
|
|
|
function mathUtils.linearInterpolation(percent, min, max)
|
|
return ((max - min) * percent) + min
|
|
end
|
|
|
|
--[[
|
|
Used for gaussian random numbers
|
|
--]]
|
|
function mathUtils.gaussianRandom(mean, std_dev)
|
|
-- marsagliaPolarMethod
|
|
local iid1
|
|
local iid2
|
|
local q
|
|
repeat
|
|
iid1 = 2 * mRandom() + -1
|
|
iid2 = 2 * mRandom() + -1
|
|
q = (iid1 * iid1) + (iid2 * iid2)
|
|
until (q ~= 0) and (q < 1)
|
|
local s = mSqrt((-2 * mLog10(q)) / q)
|
|
local v = iid1 * s
|
|
|
|
return mean + (v * std_dev)
|
|
end
|
|
|
|
function mathUtils.gaussianRandomRange(mean, std_dev, min, max)
|
|
if (min >= max) then
|
|
return min
|
|
end
|
|
local r
|
|
repeat
|
|
local iid1
|
|
local iid2
|
|
local q
|
|
repeat
|
|
iid1 = 2 * mRandom() + -1
|
|
iid2 = 2 * mRandom() + -1
|
|
q = (iid1 * iid1) + (iid2 * iid2)
|
|
until (q ~= 0) and (q < 1)
|
|
local s = mSqrt((-2 * mLog10(q)) / q)
|
|
local v = iid1 * s
|
|
|
|
r = mean + (v * std_dev)
|
|
until (r >= min) and (r <= max)
|
|
return r
|
|
end
|
|
|
|
function mathUtils.gaussianRandomRG(mean, std_dev, rg)
|
|
-- marsagliaPolarMethod
|
|
local iid1
|
|
local iid2
|
|
local q
|
|
repeat
|
|
iid1 = 2 * rg() + -1
|
|
iid2 = 2 * rg() + -1
|
|
q = (iid1 * iid1) + (iid2 * iid2)
|
|
until (q ~= 0) and (q < 1)
|
|
local s = mSqrt((-2 * mLog10(q)) / q)
|
|
local v = iid1 * s
|
|
|
|
return mean + (v * std_dev)
|
|
end
|
|
|
|
function mathUtils.gaussianRandomRangeRG(mean, std_dev, min, max, rg)
|
|
local r
|
|
if (min >= max) then
|
|
return min
|
|
end
|
|
repeat
|
|
local iid1
|
|
local iid2
|
|
local q
|
|
repeat
|
|
iid1 = 2 * rg() + -1
|
|
iid2 = 2 * rg() + -1
|
|
q = (iid1 * iid1) + (iid2 * iid2)
|
|
until (q ~= 0) and (q < 1)
|
|
local s = mSqrt((-2 * mLog10(q)) / q)
|
|
local v = iid1 * s
|
|
r = mean + (v * std_dev)
|
|
until (r >= min) and (r <= max)
|
|
return r
|
|
end
|
|
|
|
function mathUtils.euclideanDistanceNamed(p1, p2)
|
|
local xs = p1.x - p2.x
|
|
local ys = p1.y - p2.y
|
|
return ((xs * xs) + (ys * ys)) ^ 0.5
|
|
end
|
|
|
|
function mathUtils.euclideanDistancePoints(x1, y1, x2, y2)
|
|
local xs = x1 - x2
|
|
local ys = y1 - y2
|
|
return ((xs * xs) + (ys * ys)) ^ 0.5
|
|
end
|
|
|
|
function mathUtils.mahattenDistancePoints(x1, y1, x2, y2)
|
|
local xs = x1 - x2
|
|
local ys = y1 - y2
|
|
return mAbs(xs + ys)
|
|
end
|
|
|
|
function mathUtils.euclideanDistanceArray(p1, p2)
|
|
local xs = p1[1] - p2[1]
|
|
local ys = p1[2] - p2[2]
|
|
return ((xs * xs) + (ys * ys)) ^ 0.5
|
|
end
|
|
|
|
function mathUtils.distortPosition(position, size)
|
|
local xDistort = mathUtils.gaussianRandomRange(1, 0.5, 0, 2) - 1
|
|
local yDistort = mathUtils.gaussianRandomRange(1, 0.5, 0, 2) - 1
|
|
position.x = position.x + (xDistort * size)
|
|
position.y = position.y + (yDistort * size)
|
|
return position
|
|
end
|
|
|
|
-- + !КДА 2021.11 for SwarmUtils
|
|
-- example:
|
|
-- Values{1, 3, 5, 10,...}
|
|
-- Levels{1.5, 3.5}
|
|
-- result{2, 7.5}
|
|
-- precision = 0 => to integer, 1 => 0.1, 2=>0.01...
|
|
function mathUtils.calculateValuesForLevels(Values, Levels, precision)
|
|
local multipiler = 0
|
|
if precision then
|
|
multipiler = 10^precision
|
|
end
|
|
local newTierValues = {}
|
|
for i = 1, #Levels do
|
|
local lvl = Levels[i]
|
|
if not lvl then lvl = 1 end
|
|
local lvlMin = mFloor(lvl)
|
|
if (lvlMin==lvl) or not(Values[lvlMin+1]) then
|
|
newTierValues[i] = Values[lvlMin]
|
|
else
|
|
local Val1 = Values[lvlMin]
|
|
local Val2 = Values[lvlMin+1]
|
|
|
|
newTierValues[i] = mathUtils.linearInterpolation(lvl - lvlMin, Val1, Val2)
|
|
if not (multipiler==0) then
|
|
newTierValues[i] = mFloor(newTierValues[i]*multipiler)/multipiler
|
|
end
|
|
end
|
|
end
|
|
return newTierValues
|
|
end
|
|
-- - !КДА 2021.11
|
|
|
|
-- example: Tbl = {1, 2, 3, 4, 5, 6, 7}, k = 5
|
|
-- rolls: {5, 2, 3, 2, 2}
|
|
-- result: {5, 2, 3, 4, 6}
|
|
function mathUtils.getRandomElementIndexes(Tbl, k)
|
|
local result = {}
|
|
local tableAsArray = {}
|
|
for index, value in pairs(Tbl) do
|
|
tableAsArray[#tableAsArray+1] = {index = index} --, value = value}
|
|
end
|
|
local tblSize = #tableAsArray
|
|
local rndRolls = {}
|
|
for i = 1, k do
|
|
local roll = mRandom(tblSize)
|
|
--game.print("roll "..roll.."/"..tblSize) -- debug
|
|
tblSize = tblSize - 1
|
|
while true do
|
|
if not rndRolls[roll] then
|
|
rndRolls[roll] = 1
|
|
break
|
|
else
|
|
rndRolls[roll] = rndRolls[roll] + 1
|
|
roll = roll + (rndRolls[roll] - 1)
|
|
--game.print("roll -->"..roll) -- debug
|
|
end
|
|
end
|
|
result[#result+1] = tableAsArray[roll].index
|
|
end
|
|
return result
|
|
end
|
|
mathUtilsG = mathUtils
|
|
return mathUtils
|